1 (a)	full marks may be possible from a fully annotated genetic diagram females are $X X$, males are $X Y$; female gametes are X, male gametes are X or Y; ref to random fusion of gametes/shown in a Punnett square or alternative ; 1:1/50:50/described, shown/stated;	[4]	
(b)	ref to, identify/separate, sperm with X (chromosome) ; semen/sperm, inserted/injected, into, uterus/oviduct ; at/around time of, ovulation/AW ;	max [2]	
(c)	$\mathbf{1}$ formula milk is, similar/closer in composition, to human milk ; $\mathbf{2}$ any nutrient with similar quantities in formula and human milk ; $\mathbf{3}$ idea that human milk meets requirements of human babies ; $\mathbf{4}$ comparisons with cow's milk formula supplies less protein which is harder to digest ; $\mathbf{5}$ \mathbf{l} formula supplies more iron, for haemoglobin formation/to prevent $\mathbf{6}$ anaemia ; formula supplies more vitamin D for, absorption of calcium/formation of bone/for strong bones/prevention of rickets ; $\mathbf{7}$ formula supplies more vitamin A, for immune system/retina/rods/vision in dim light/prevention of night blindness ; $\mathbf{8}$ use of comparative figures with correct units ;	max [4]	
(d)	biological/made by cells; catalyst/speeds up the rate of a reaction ; made of protein ;	max [2]	

$1 \quad(e)$		tubes 1 and 3 - the effect of pH lysozyme is active in, $1 / \mathrm{pH} 4.0 /$ acid ; cell walls, broken down/digested/destroyed in tube 1 ; no (bacterial) growth in tube 1 ; tubes 1 and 4 - the effect of type of bacteria lysozyme, destroys/AW, bacteria, A/in tube 1 ; lysozyme does not, destroy/AW, bacteria, B/in tube 4 ; ref to specificity to bacteria $\mathbf{A} /$ bacteria \mathbf{B} is resistant ; ignore bacteria are immune idea that nothing in (cell wall of) bacteria B for lysozyme to digest ; tubes 1 and 2 - the effect of boiling lysozyme denatured (by boiling) ; lysozyme not, active ; idea that tube 2 is a control to show that lysozyme is responsible for no growth in tube 1 ;	\max [6]	
(f)	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 3 \\ 4 \end{array}$	gives (passive) immunity ; defends against, infection/illness/disease/pathogens/AW ; ref to diseases that the mother has had ; any one function of antibodies;	max [2]	

(a)	lock and key mechanism; substrate fits into enzyme; (shape of) substrate is complementary to, enzyme/active site; ref to active site; substrate breaks/product(s) forms/product(s) leaves enzyme; enzyme, free for next reaction/not used up/remains unchanged; AVP;			
(b)	(cellulose) cell wall;	max 3	e.g. lowers activation ener	
(c) (i)	protease activity, similar/AW, on both sites; all enzyme activity is, greater/better/faster, in site A; cellulase activity on site A greater than protease activity on site A; cellulase activity, higher on site A, than site B/ORA; cellulase and protease activity on site B similar; use of data with units to support any of these marking points;	1		
(ii)	pH/water content, no effect on protease activity; cellulase more active, at higher pH/less acidic environment; cellulase more active, at lower soil moisture; ref to optimum pH of, protease/cellulase/enzymes; low pH may denature cellulase; idea of different leaf composition; size of leaves/surface area/ species of leaf; different stage of decomposition;	max 3		

2 (d)	1 ref to, decomposers/bacteria/fungi; 2 proteins are broken down to amino acids; by proteases; amino acids converted to, ammonia/ammonium (ions); deamination; ammonia/ammonium ions, converted to nitrite ions; nitrites converted to nitrate ions; nitrification/oxidation/nitrifying bacteria; nitrate ions absorbed by plants;	max 3	protease is linked to MP2 ammonia to nitrate $=1 \mathrm{~A}$ nitrites A nitrates ammonia to nitrite and then to nitrate $=2$ A nitrates
(e) (i)	nitrogen fixation;	1	
(ii)	```root nodules (on legumes); free living bacteria; nitrogen-fixing bacteria; nitrogen, converted to, ammonium/ammonia/amino acids;```	max 2	I lightning I nitrate(s) I nitrification/nitrifying bacteria
		[Total: 17]	

3 (a (i)	1 2 3 4	without enzymes reactions, occur too slowly / not at all ; A enzymes speed up reactions reduce, activation energy / energy needed for a reaction ; reactions take place at lower temperatures; enzymes are catalysts ;	[max 3]	MP1 A some aspect of metabolism as an alternative to reactions, e.g. digestion
(ii)	lipase - pancreas ; protease - stomach / pancreas ; amylase - salivary gland / pancreas ;		[3]	organs have to be different if the answer for lipase is incorrect A pancreas for either protease or amylase but not both
(b) (i)	control ; R control(led) variable to show differences in, colour / pH / fat, due to, enzyme / lipase ; to use for comparing, colours / pH ;		[max 2]	A to show what happens without, enzyme / lipase, and bile salts
(ii)	acid pH / below pH 5 / lowers the $\mathrm{pH} /$ becomes acidic ; fat has been, digested / broken down ; fatty acids (and glycerol);		[3]	R ref to lipase / bile salts being acidic

